skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yamamoto, Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present seismic two-way traveltime depth relationships for all sites drilled by the International Ocean Discovery Program Expedition 398, Hellenic Arc Volcanic Field, using high-resolution multichannel seismic and core data. First, we filter and interpolate P-wave velocity and density data taken from (1) whole-round cores and (2) discrete measurements on half-round cores. We establish the reliability of shipboard density measurements by comparing them with in situ logging data. Using these validated measurements, we estimate acoustic impedance and synthetic seismograms. By correlating synthetic seismograms with those extracted from multichannel seismic profiles at each site, we establish time-depth relationships. We assess the quality of these relationships by examining the alignment of major lithologic boundaries with prominent unconformities or correlated conformities in the reflection seismic data. The results of this report facilitate the mapping of core data onto the multichannel seismic profiles at each site, allowing for spatial tracing of core data across the Christiana-Santorini-Kolumbo volcanic field. 
    more » « less
    Free, publicly-accessible full text available June 13, 2026
  2. International Ocean Discovery Program (IODP) Expedition 398, Hellenic Arc Volcanic Field, recovered volcanic and nonvolcanic sediments and Messinian evaporites, as well as the nonvolcanic basement. The total recovery of about 3.3 km has the potential to significantly expand our understanding of the volcanic and tectonic history of the Christiana-Santorini-Kolumbo volcanic field and the climate history of the eastern Mediterranean. Here we report semiquantitative bulk elemental analyses of X-ray fluorescence core scans for Site U1591, drilled off Christiani Island, and Site U1599, drilled off Anafi Island, and compare these to records of natural gamma radiation that were measured aboard the R/V JOIDES Resolution. 
    more » « less
  3. Free, publicly-accessible full text available December 20, 2026
  4. Free, publicly-accessible full text available December 20, 2026
  5. Free, publicly-accessible full text available December 20, 2026
  6. The extremely large slip that occurred on the shallow portion of the Japan Trench subduction zone during the 2011 Mw 9.1 Tohoku-oki earthquake directly contributed to the devastating tsunami that inundated the Pacific coast of Japan. International Ocean Discovery Program (IODP) Expedition 405 (Tracking Tsunamigenic Slip Across the Japan Trench) aimed to investigate the conditions and processes that facilitated the extremely shallow slip on the subduction interface during the 2011 Tohoku-oki earthquake to improve understanding of the factors that allow slip to the trench on subduction zones. Expedition 405 implemented a combined logging, coring, and observatory operational plan at two sites: Site C0026, ~8 km seaward of the Japan Trench, to characterize the input sediments to the subduction zone and Site C0019, ~6 km landward of the trench, where the plate boundary fault zone is present at ~825 meters below seafloor (mbsf). At Site C0026, the input section was logged to ~430 mbsf with a logging-while-drilling (LWD) assembly that characterized the succession of sediments and rocks from the seafloor to the basaltic rocks of the oceanic crust. Cores recovered from four holes as deep as 290 mbsf contain a sequence of hemipelagic and pelagic sediments that will be input into the shallow subduction system and therefore control both the localization of the plate boundary fault zone and the slip behavior of the plate boundary. Site C0019 was previously drilled in 2012 during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project [JFAST]), and revisiting this site allowed temporal variations in the frontal prism and plate boundary fault zone to be evaluated. The LWD data to ~980 mbsf characterized the frontal prism, plate boundary fault zone, and lower plate to the basaltic volcanic rocks. Cores were recovered from multiple holes that contain a variety of muds from the frontal prism and the plate boundary fault zone, as well as lower plate materials. Comparison with the sediments from Site C0026 provides a basis to interpret the tectonic and sedimentological processes operating in the dynamic environment of the frontal prism. Cores from the plate boundary fault zone provide a unique window into the structural complexity of an active plate boundary fault that is known to host large seismic slip. Two borehole observatories were installed at Site C0019 that contain temperature sensors deployed to take measurements over a period of years and reveal the hydrogeologic structure of the shallow subduction system. These hugely successful drilling operations, combined with postexpedition work to measure the mechanical, frictional, paleomagnetic, and hydrogeologic properties of the core samples and to constrain the history of past seismic slip at Site C0019, will provide an unprecedented opportunity to advance our understanding of shallow subduction systems. Outreach during the expedition leveraged and elevated the success of the operations by sharing the outcomes with a variety of domestic and international audiences, including scientists, students, educators, stakeholders, and the general public. Thanks to the efforts of a large group of onboard outreach officers and their onshore support, activities included ship-to-shore broadcast events; interviews with science party members and crew; the publication of videos, blogs, magazine articles, and social media posts; and development of formalized classroom lesson plans and materials. 
    more » « less
    Free, publicly-accessible full text available December 20, 2026
  7. Site U1592 (proposed Site CSK-09A) is located ~10 km southeast of Anhydros Island in the Anafi Basin at 693 meters below sea level (mbsl) (Figure F1). The aim at the site was to penetrate the entire volcano-sedimentary fill as far as the Alpine basement to reconstruct the evolution of the Anafi Basin: history of subsidence, presence of volcanic event layers in the basin sediments, and links between volcanism and crustal tectonics. We drilled to a maximum recovery depth of 519.8 meters below seafloor (mbsf) in two holes (U1592A and U1592B), terminating in limestone basement (all depths below seafloor [mbsf] are given using the core depth below seafloor, Method A [CSF-A], scale, except in Operations where the drilling depth below seafloor [DSF] scale is used). Average core recoveries were 71% (Hole U1592A) and 50% (Hole U1592B). The Anafi Basin potentially recorded the full volcanic history of Santorini (and any older centers) since rift inception, but it was envisaged to probably also contain few eruptive products from Kolumbo. Drilling enabled reconstruction of the volcanic, sedimentary, and tectonic histories of the Anafi Basin, allowing us to compare its evolution with that of the Anhydros Basin. The site was also chosen to develop a core-log-seismic integration stratigraphy and compare it with the recently published seismic stratigraphy for the basin (Preine et al., 2022a, 2022b) and the paleotectonic reconstruction of the region (Nomikou et al., 2016, 2018). The site transects six seismic packages of the Anafi rift basin, as well as the onlap surfaces between them (Nomikou et al., 2016, 2018; Preine et al., 2022a) (Figure F2). The Anafi Basin is crossed by many seismic profiles obtained in campaigns between 2006 and 2019, many of them multichannel (Hübscher et al., 2015; Nomikou et al., 2016, 2018). It is included within the area of the 2015 PROTEUS seismic tomography experiment, during which subbottom profiling, gravity, and magnetic data were also recorded (Hooft et al., 2017). The basin bathymetry had been studied in several marine campaigns, and fault distributions and throws had been mapped (Nomikou et al., 2016; Hooft et al., 2017). Previously published analyses of the seismic data suggested the following possible interpretations (from the bottom up; Preine et al., 2022a, 2022b): Units U1 and U2: sediment packages predating Santorini and Kolumbo volcanism; Unit U3: sediments and the products of the early Kolumbo volcanism and some of the Kolumbo cones; Unit U4: sediments associated with a major rift pulse; and Units U5 and U6: sediments and the products of Santorini activity, some of the Kolumbo cones, and the later eruptions of Kolumbo including the 1650 Common Era (CE) eruption. Units U3–U6 were believed to be of Pleistocene age, and Units U1 and U2 were believed to be possibly Pliocene. The site enabled us to test these interpretations by using the cores to reconstruct a near-complete volcanic stratigraphy consistent with both onshore and offshore constraints and pinned by chronological markers from biostratigraphy, magnetostratigraphy, and sapropel records. Benthic foraminifera from fine-grained sediments provided estimates of paleowater depths and, through integration with seismic profiles and chronologic data, of time-integrated basin subsidence rates. Coring at Site U1592 in the Anafi Basin addressed scientific Objectives 1–4 and 6 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). It was complemented by Site U1589 in the Anhydros Basin because each basin taps a different sediment distributary branch of the Christiana-Santorini-Kolumbo volcanic system. 
    more » « less
  8. Site U1600 is located 10 km south of Anhydros Island within a small graben atop the Anhydros Horst (Figure F1). The Anhydros Horst separates the Anhydros Basin to the west from the Anafi Basin to the east (Preine et al., 2022a, 2022b). The water depth is 326 meters below sea level (mbsl). Permission to drill in this location was requested as Site CSK-24A and granted by the International Ocean Discovery Program (IODP) Environmental Protection and Safety Panel during the expedition. Three holes (U1600A–U1600C) were drilled for a total recovery depth of 184.2 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A] scale, except in Operations, where the drilling depth below seafloor [DSF] scale is used), with average recoveries ranging 32%–75%. The site was chosen because of its situation on the Anhydros Horst immediately east of the Kolumbo chain of volcanoes and for the well-stratified nature of the graben fill on seismic profiles (Figure F2). It seemed to be a likely site at which to drill a condensed sequence of muds and tephra for chronology, sheltered from the large-scale mass wasting of the main basins. Site U1600 is located within the area of the 2015 PROTEUS seismic tomography experiment, during which subbottom profiling, gravity, and magnetic data were also recorded (Hooft et al., 2017). Drilling at Site U1600 provided the possibility of reconstructing a near-complete volcanic stratigraphy consistent with both onshore and offshore constraints and pinned by chronological markers from biostratigraphy, magnetostratigraphy, and sapropel records. Benthic foraminifera from fine-grained sediments provided estimates of paleowater depths and, via integration with seismic profiles and chronologic data, of time-integrated basin subsidence rates. Drilling on the Anhydros Horst addressed scientific Objectives 1–4 and 6 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). 
    more » « less
  9. Site U1594 (proposed Site CSK-07B) is located in the southern basin of Santorini caldera at a water depth of 291 meters below sea level (mbsl) (Figure F1). It was drilled to a maximum recovery depth of 50.1 meters below seafloor (mbsf) in a single hole (U1594A) with 93% recovery before hole instability set in and the hole was terminated (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A] scale, except in Operations where the drilling depth below seafloor [DSF] scale is used). Site U1595 addresses the same drilling objectives and lies southwest of Site U1594. Two additional sites (U1596 and U1597) lie in the northern caldera basin. Four seismic units have been recognized in the caldera (Johnston et al., 2015; Nomikou et al., 2016) (Figure F2). They were thought to consist of muds and sands from cliff mass wasting (Seismic Unit S1); compacted (possibly lithified) sandy volcaniclastics from Kameni Volcano (Unit S2); and consolidated coarse blocky intracaldera tuffs, landslide debris, and/or flood gravels (Unit S3). Unit S4 was thought to be intracaldera tuff from the Late Bronze Age eruption. The four caldera sites were planned to sample Units S1–S3; test the published correlations between the two caldera basins; penetrate below Unit S3 into Unit S4; and address scientific Objectives 1, 4, 5, and 7 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). By drilling both caldera basins and exploiting our dense seismic reflection coverage, we gained access to the 3D architecture of the entire caldera fill. We also targeted the question of why the northern basin is 100 m deeper than the southern one. Finally, we tested whether Unit S3 consisted of flood debris from the caldera flooding event (Nomikou et al., 2016) or was Late Bronze Age intracaldera tuff (Johnston et al., 2015). The intracaldera sites were used for microbiological work of scientific Objective 7. 
    more » « less
  10. Site U1597 (proposed Site CSK-05C) is located in the northern basin of the Santorini caldera (Figure F1). It lies at a water depth of 382 meters below sea level (mbsl) and has a maximum recovery depth of 42.7 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A], scale, except in Operations where the drilling depth below seafloor [DSF] scale is used) with 94% core recovery. Site U1597 addresses the same drilling objectives and lies southeast of Site U1596. Two additional sites (U1594 and U1595) lie in the southern caldera basin. Four seismic units have been recognized in the Santorini caldera (Johnston et al., 2015; Nomikou et al., 2016) (Figure F2). They were thought to consist of muds and sands from cliff mass wasting (Unit S1); compacted (possibly lithified) sandy volcaniclastics from Kameni Volcano (Unit S2); and consolidated coarse blocky intracaldera tuffs, landslide debris, and/or flood gravels (Unit S3). Seismic Unit S4 was thought to be intracaldera tuff from the Late Bronze Age eruption. The four caldera sites were planned to sample Units S1–S3; test the published correlations between the two caldera basins; penetrate below Unit S3 into Unit S4; and address scientific Objectives 1, 4, 5, and 7 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). By drilling both caldera basins and exploiting our dense seismic reflection coverage, we gained access to the 3D architecture of the entire caldera fill. We also addressed the question of why the northern basin is 100 m deeper than the southern one, with a thicker Unit S1 but a thinner Unit S3. Finally, we tested whether Unit S3 consisted of flood debris from the caldera-flooding event (Nomikou et al., 2016) or whether it was Late Bronze Age intracaldera tuff (Johnston et al., 2015). The intracaldera sites were used for microbiological work of Objective 7. 
    more » « less